
CORBA Quick Start
Using TAO with C++Builder 6

Christopher Kohlhoff (chris@kohlhoff.com)
Tenermerx Pty Ltd. Copyright c© 2002



ii



Contents

1 Introduction 1
1.1 What is CORBA? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 What is TAO? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Finding Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Typographical Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Programming with C++Builder and TAO 5
2.1 Creating a Project Using the Wizard . . . . . . . . . . . . . . . . . . . . 5
2.2 Creating a Project Manually . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Creating a Dynamically-Linked Console Project . . . . . . . . . 7
2.2.2 Creating a Statically-Linked Console Project . . . . . . . . . . . 9
2.2.3 Creating a Dynamically-Linked VCL Project . . . . . . . . . . . 10
2.2.4 Creating a Statically-Linked VCL Project . . . . . . . . . . . . . 12

2.3 Using Precompiled Headers . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Using the IDL Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Hello World - A Tutorial 17
3.1 Writing the IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Writing the Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Writing the Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Running the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 VCL Hello World - A Tutorial 29
4.1 Writing the IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Writing the Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Writing the Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Running the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A Building and Installing ACE+TAO 45
A.1 Quick Build Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2 Detailed Build Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iii



A.2.1 Checking System Requirements . . . . . . . . . . . . . . . . . . 47
A.2.2 Creating a Configuration Header File . . . . . . . . . . . . . . . 47
A.2.3 Build Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.2.4 Build Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.2.5 Using TAO from C++Builder . . . . . . . . . . . . . . . . . . . . 50

iv



Chapter 1

Introduction

This CORBA Quick Start provides an overview of using C++Builder 6 with TAO to
get you started developing CORBA applications. It also suggests where to look for
further details about CORBA development in C++Builder.

• Chapter 2 looks at the development of CORBA applications using C++Builder
6 and TAO, including creating a project, precompiled headers, and using the
IDL compiler.

• Chapter 3 takes you through the creation of a simple CORBA application to
illustrate the basic steps involved in using TAO with C++Builder 6. It shows
the use of CORBA in console programs.

• Chapter 4 takes you through the creation of a VCL-based CORBA application
to show how to use TAO in programs with graphical user interfaces.

• Appendix A explains how to build and install ACE+TAO from source code
using C++Builder 6.

1.1 What is CORBA?

Common Object Request Broker Architecture (CORBA) is an open, vendor-independent
specification for an architecture and infrastructure that allows applications to com-
municate over networks.

The core features of CORBA are:

• A high-level Interface Definition Language (IDL), allowing applications to spec-
ify their distributed communication in an object-oriented fashion.

Introduction 1



What is TAO?

• Standardised protocols, GIOP and IIOP, for on-the-wire CORBA communica-
tion.

• A set of programming APIs to address the middleware needs of client to server
connectivity.

These features allow all CORBA-based programs to interoperate, even though they
may be written in almost any programming language, and running on almost any
operating system or network.

1.2 What is TAO?

TAO is a standard-compliant implementation of CORBA that is designed for ap-
plications with high-performance and real-time requirements. TAO is freely avail-
able, open source software, and has been developed by research groups at Washing-
ton University and University of California at Irvine. TAO’s development has been
funded by various industrial sponsors, and it is being actively used and enhanced
by a large development community.

1.3 Finding Information

The following web sites, newsgroups, mailing lists and books may provide useful
further information about the use of CORBA and TAO.

• The TAO project home page at http://www.cs.wustl.edu/˜schmidt/
TAO.html . Includes links to download the latest releases and documentation.

• The OMG’s CORBA web site at http://www.corba.org provides an overview
of CORBA and lists CORBA case studies and success stories.

• The ACE+TAO mailing lists and newsgroup (http://www.cs.wustl.edu/
˜schmidt/TAO-mail.html ) are relatively high volume discussion forums
that provide peer support for users of ACE and TAO.

• OCI (http://www.ociweb.com ) provides commercial support for TAO.

• The book:

Henning, Michi and Steve Vinoski (1999). Advanced CORBA Program-
ming with C++. Addison-Wesley.

2 CORBA Quick Start - Using TAO with C++Builder 6

http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.corba.org
http://www.cs.wustl.edu/~schmidt/TAO-mail.html
http://www.cs.wustl.edu/~schmidt/TAO-mail.html
http://www.ociweb.com


Typographical Conventions

contains comprehensive information on the use of CORBA with C++, and is
virtually essential reading for anyone doing CORBA development using C++.

• The TAO with C++Builder page at http://www.tenermerx.com/tao_bcb
includes information on building and using ACE and TAO with C++Builder.

1.4 Typographical Conventions

This manual uses the typographical conventions outlined below to indicate special
text.

• IDL and C++ source code appears in fixed width type .

• Environment variables and any commands you must type in appear in fixed
width type .

• File names appear as bold italic type.

• Menu items, buttons and other user interface elements appear in sans serif
type.

Introduction 3

http://www.tenermerx.com/tao_bcb


Typographical Conventions

4 CORBA Quick Start - Using TAO with C++Builder 6



Chapter 2

Programming with C++Builder and
TAO

This chapter provides an overview of the development of CORBA applications using
C++Builder 6 and TAO, including creating a project, precompiled headers, and using
the IDL compiler.

2.1 Creating a Project Using the Wizard

The ACE+TAO C++Builder project wizards can be used to generate C++Builder IDE
projects that use ACE or TAO. They also include support for generating some useful
helper classes.

If installed correctly, the wizards are found in the New Items dialog on a tab named
ACE+TAO:

Programming with C++Builder and TAO 5



Creating a Project Using the Wizard

The items shown on the ACE+TAO tab are:

• ACE Application: Wizard for creating VCL, console or Windows API applica-
tions that use ACE only.

• TAO Application: Wizard for creating VCL, console or Windows API applica-
tions that use TAO.

• ORB Thread: Wizard for generating a class descended from TThread that runs
the ORB event loop in a background thread.

• Reactor Thread: Wizard for generating a class that runs the default ACE reac-
tor in a background thread.

• VCL Method Request: Wizard for generating a class that provides access to
the VCL Synchronize functionality from anywhere in a program.

To create C++Builder IDE project that uses TAO, select TAO Application. The Create
TAO Application dialog that appears presents the following options:

• Application Type: Select whether to create a VCL, Windows API or console
application.

6 CORBA Quick Start - Using TAO with C++Builder 6



Creating a Project Manually

• Linkage: Choose whether to use dynamic or static versions of the ACE+TAO li-
braries, and whether to use libraries that contain debugging information. Note
that ACE+TAO prebuilt for C++Builder 6 only includes the dynamic libraries
without debug information.

• Precompiled Headers: Enable the use of precompiled headers, and set the
name of the file to use to store the precompiled header information.

• CORBA Libraries: Select the additional CORBA libraries to be linked into the
application.

• ACE+TAO Location: Specify the directory containing an installed version of
ACE+TAO or an ACE+TAO source tree. The wizard can generate projects that
use the ACE+TAO libraries and header files from either location.

The code generated by the ACE+TAO wizards can be customised by editing the
template files located in the same directory as the wizard package (the .bpl file).

2.2 Creating a Project Manually

This section outlines how to manually create a C++Builder IDE project that uses
TAO.

2.2.1 Creating a Dynamically-Linked Console Project

Note: These instructions assume that you have either:

• installed a pre-built copy of the dynamically-linked ACE+TAO libraries, executa-
bles and header files; or

• built and installed the dynamically-linked version of ACE+TAO according to the
instructions in appendix A.

1. Create a new console application by going File→New→Other. . . and using the
Console Wizard. Make sure that the source type is C++, and that both Multi
Threaded and Console Application are checked.

2. TAO is built on top of the ACE library, so you need to initialise ACE from your
program. This will be done automatically provided your main function has
the argc and argv parameters:

Programming with C++Builder and TAO 7



Creating a Project Manually

#include <tao/corba.h>

int main(int argc, char* argv[])
{

// ...
}

3. Go to Project→Options. . . , then to the Linker page and make sure that Use
dynamic RTL is checked.

4. Still in the Project Options dialog, go to the Directories/Conditionals page.

5. Add the following directory to the include path:

$(ACETAODIR)\include

Note: See section A.2.5 if you have not set up the ACETAODIRenvironment variable.

6. Add this directory to the library path:

$(ACETAODIR)\lib

7. Close the Project Options dialog.

8. Go to Project→Edit Option Source and add the following libraries to the end
of the SPARELIBSvalue:

ACE_b.lib TAO_b.lib

You may add other TAO libraries as required for the CORBA Services and other
TAO features. For example, to use the Naming Service you would add:

TAO_CosNaming_b.lib

9. Save and close the project’s option source.

10. Build your application.

8 CORBA Quick Start - Using TAO with C++Builder 6



Creating a Project Manually

2.2.2 Creating a Statically-Linked Console Project

Note: These instructions assume that you have built and installed the statically-
linked version of ACE+TAO according to the instructions in appendix A. A pre-built
statically-linked version is not available.

1. Create a new console application by going File→New→Other. . . and using the
Console Wizard. Make sure that the source type is C++, and that both Multi
Threaded and Console Application are checked.

2. TAO is built on top of the ACE library, so you need to initialise ACE from your
program. This will be done automatically provided your main function has
the argc and argv parameters:

#include <tao/corba.h>

int main(int argc, char* argv[])
{

// ...
}

3. Go to Project→Options. . . , then to the Linker page and make sure that Use
dynamic RTL is not checked.

4. Still in the Project Options dialog, go to the Directories/Conditionals page.

5. Add the following directory to the include path:

$(ACETAODIR)\include

Note: See section A.2.5 if you have not set up the ACETAODIRenvironment variable.

6. Add this directory to the library path:

$(ACETAODIR)\lib

7. Add these conditional defines:

ACE_AS_STATIC_LIBS=1
TAO_AS_STATIC_LIBS=1

8. Close the Project Options dialog.

Programming with C++Builder and TAO 9



Creating a Project Manually

9. Go to Project→Edit Option Source and add the following libraries to the end
of the SPARELIBSvalue:

ACE_bs.lib TAO_bs.lib

You may add other TAO libraries as required for the CORBA Services and other
TAO features. To statically link your application you will need to specify a
list of libraries that completely satisfies the symbols required for linking. For
example, to use the Naming Service may have to add:

TAO_CosNaming_bs.lib
TAO_Svc_Utils_bs.lib
TAO_PortableServer_bs.lib

10. Add the following library to the end of the ALLLIB value:

ws2_32.lib

11. Save and close the project’s option source.

12. Build your application.

2.2.3 Creating a Dynamically-Linked VCL Project

Note: These instructions assume that you have either:

• installed a pre-built copy of the dynamically-linked ACE+TAO libraries, executa-
bles and header files; or

• built and installed the dynamically-linked version of ACE+TAO according to the
instructions in appendix A.

1. Create a new VCL application by going File→New→Application.

2. In all .cpp files in the project, replace occurrences of

#include <vcl.h>
#pragma hdrstop

with

10 CORBA Quick Start - Using TAO with C++Builder 6



Creating a Project Manually

#include <tao/corba.h>
#pragma hdrstop

3. TAO is built on top of the ACE library, so you need to initialise ACE from your
program. To do this you must add calls to ACE::init and ACE::fini from
startup and cleanup functions:

#pragma package(smart_init)

void ace_init(void)
{
#pragma startup ace_init

ACE::init();
}

void ace_fini(void)
{
#pragma exit ace_fini

ACE::fini();
}

WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
{

// ...
}

For VCL applications it is important that you have the line

#pragma package(smart_init)

so that the ACE::init and ACE::fini calls occur before and after the VCL
cleanup and initialisation respectively.

4. Go to Project→Options. . . , then to the Linker page and make sure that Use
dynamic RTL is checked.

5. Still in the Project Options dialog, go to the Directories/Conditionals page.

6. Add the following directory to the include path:

$(ACETAODIR)\include

Programming with C++Builder and TAO 11



Creating a Project Manually

Note: See section A.2.5 if you have not set up the ACETAODIRenvironment variable.

7. Add this directory to the library path:

$(ACETAODIR)\lib

8. Add the following conditional define:

ACE_HAS_VCL=1

This define causes the TAO header files to include vcl.h for you automatically.
This is important as ACE+TAO, for reasons of portability, needs to control the
order in which system header files are included.

9. Close the Project Options dialog.

10. Go to Project→Edit Option Source and add the following libraries to the end
of the SPARELIBSvalue:

ACE_b.lib TAO_b.lib

You may add other TAO libraries as required for the CORBA Services and other
TAO features. For example, to use the Naming Service you would add:

TAO_CosNaming_b.lib

11. Save and close the project’s option source.

12. Build your application.

2.2.4 Creating a Statically-Linked VCL Project

Note: These instructions assume that you have built and installed the statically-
linked version of ACE+TAO according to the instructions in appendix A. A pre-built
statically-linked version is not available.

1. Create a new VCL application by going File→New→Application.

2. In all .cpp files in the project, replace occurrences of

#include <vcl.h>
#pragma hdrstop

12 CORBA Quick Start - Using TAO with C++Builder 6



Creating a Project Manually

with

#include <tao/corba.h>
#pragma hdrstop

3. TAO is built on top of the ACE library, so you need to initialise ACE from your
program. To do this you must add calls to ACE::init and ACE::fini from
startup and cleanup functions:

#pragma package(smart_init)

void ace_init(void)
{
#pragma startup ace_init

ACE::init();
}

void ace_fini(void)
{
#pragma exit ace_fini

ACE::fini();
}

WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
{

// ...
}

For VCL applications it is important that you have the line

#pragma package(smart_init)

so that the ACE::init and ACE::fini calls occur before and after the VCL
cleanup and initialisation respectively.

4. Go to Project→Options. . . , then to the Linker page and make sure that Use
dynamic RTL is not checked.

5. Still in the Project Options dialog, go to the Directories/Conditionals page.

6. Add the following directory to the include path:

$(ACETAODIR)\include

Programming with C++Builder and TAO 13



Creating a Project Manually

Note: See section A.2.5 if you have not set up the ACETAODIRenvironment variable.

7. Add this directory to the library path:

$(ACETAODIR)\lib

8. Add the following conditional defines:

ACE_AS_STATIC_LIBS=1
TAO_AS_STATIC_LIBS=1
ACE_HAS_VCL=1

The ACEHASVCL define causes the TAO header files to include vcl.h for you
automatically. This is important as ACE+TAO, for reasons of portability, needs
to control the order in which system header files are included.

9. Close the Project Options dialog.

10. Go to Project→Edit Option Source and add the following libraries to the end
of the SPARELIBSvalue:

ACE_bs.lib TAO_bs.lib

You may add other TAO libraries as required for the CORBA Services and other
TAO features. To statically link your application you will need to specify a
list of libraries that completely satisfies the symbols required for linking. For
example, to use the Naming Service may have to add:

TAO_CosNaming_bs.lib
TAO_Svc_Utils_bs.lib
TAO_PortableServer_bs.lib

11. Add the following library to the end of the ALLLIB value:

ws2_32.lib

12. Save and close the project’s option source.

13. Build your application.

14 CORBA Quick Start - Using TAO with C++Builder 6



Using Precompiled Headers

2.3 Using Precompiled Headers

If you include IDL-generated files in your project, or if you want to create an appli-
cation of any great size, your compile speed will be improved if you create your own
header file to use for precompiled header generation.

The simplest example of such a file would be something like:

#ifndef PchH
#define PchH

#include <tao/corba.h>

#endif

Further improvements in compile speed can be made by adding additional CORBA
header files that you use:

#ifndef PchH
#define PchH

#include <tao/corba.h>
#include <orbsvcs/CosNamingC.h>
#include <orbsvcs/CosEventChannelAdminC.h>

#endif

Unfortunately, some of the TAO header files contain source code that is not compat-
ible with C++Builder’s precompiled header mechanism. You may want to experi-
ment with the different header files to see what results you get.

2.4 Using the IDL Compiler

The simplest way to use the IDL compiler from the C++Builder IDE is to use a batch
file project.

To run the IDL compiler with the default options, use a batch file project with com-
mands like the following:

set TAO_ROOT=%ACETAODIR%\include
tao_idl myfile.idl

Programming with C++Builder and TAO 15



Using the IDL Compiler

To generate source files which include a precompiled-header file, use commands like
the following:

set TAO_ROOT=%ACETAODIR%\include
tao_idl -Wb,pch_include=pch.h myfile.idl

Given an input file called name.idl, the IDL compiler will generate the following files:

Name Description
nameC.h Client-side declarations.
nameC.i Client-side inline implementation.
nameC.cpp Client-side implementation. Add this source file to your

project for both client and server programs.
nameS.h Server-side declarations.
nameS.i Server-side inline implementation.
nameS.cpp Server-side implementation. Add this source file to your

project for server programs.
nameS T.h Server-side template declarations.
nameS T.i Server-side template inline implementation.
nameS T.cpp Server-side template implementation. There is no need to

add this file to any project, it is included automatically.

16 CORBA Quick Start - Using TAO with C++Builder 6



Chapter 3

Hello World - A Tutorial

This tutorial takes you through the creation of a simple CORBA application to illus-
trate the basic steps involved in using TAO with C++Builder 6. It shows the use of
CORBA in a console application.

Note: These instructions assume that you have either:

• installed a pre-built copy of the ACE+TAO libraries, executables and header
files; or

• built and installed ACE+TAO according to the instructions in appendix A.

The instructions also make use of the ACE+TAO Project Wizard to simplify the cre-
ation of CORBA applications. Please refer to section 2.1 to check that you have this
installed in the C++Builder 6 IDE.

3.1 Writing the IDL

The first step in developing this simple distributed application is to write the IDL.
The IDL defines the operations that may be executed remotely, and is used to gener-
ate the C++ source code that we will use in our client and server programs.

For Hello World, define the following IDL in a file called hello.idl:

#ifndef HELLO_IDL
#define HELLO_IDL

interface Hello
{

Hello World - A Tutorial 17



Writing the Client

void say_hello(in string name);
};

#endif

As you can see, we have defined an interface called Hello which contains a single
operation say hello . This operation takes one input parameter, a string containing
the name of a person.

To compile this IDL file, do the following:

1. Go to File→New→Other. . . and create a new Batch File.

2. Right-click the batch file in the Project Manager, select Edit/Options. . . , and
add the following commands:

set TAO_ROOT=%ACETAODIR%\include
tao_idl hello.idl

3. Save the batch file project into the same directory as the IDL file.

4. Right-click the batch file in the Project Manager and select Execute. You will
see that a number of source files have now been generated.

3.2 Writing the Client

We will begin development of the application itself with the console-based client
program.

1. Go to File→New→Other. . . , switch to the ACE+TAO tab and choose to create a
new TAO Application.

2. Set the Application Type to Console and make sure that Use VCL is not checked.

3. Set the Linkage to Dynamic and ensure that Debug Libs is not checked.

4. Under Precompiled Headers, uncheck Use PCH since we will not be using a
precompiled header for this console project.

5. The ACE+TAO Location should be set to $(ACETAODIR) and the Location is
an Installed Copy.

18 CORBA Quick Start - Using TAO with C++Builder 6



Writing the Client

6. Press OK to generate a new TAO console application, and use File→Save All to
save the files as HelloClient.cpp and HelloClient.bpr in the same directory as
the IDL file created above.

7. Add the IDL-generated source file helloC.cpp to the project. This file contains
the Hello interface’s stub code. The stub code is a group of classes that a client
application can use to communicate with any server objects that implement the
Hello interface.

8. Returning to HelloClient.cpp, we must include the header file containing the
client-side declarations, helloC.h, so that the IDL definitions for the Hello in-
terface are available to the client program.

#include <tao/corba.h>
#include <iostream>
#include <fstream>
#include <string>
#include "helloC.h"

9. Next the ORB object must be created and initialised using the command line
arguments. The ORBinit function strips away any command line arguments
that it recognises as ORB-related, so that you are left only with your applica-
tion’s arguments to process yourself.

int main(int argc, char* argv[])
{

try
{

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

10. The client expects that argv[1] specifies the name of a file that contains what
is called an Interoperable Object Reference (IOR). This is a string containing
all the necessary information for a client to contact the server object, and is
somewhat like a distributed pointer.

// Check command line arguments.
if (argc != 2)
{

std::cerr << "Usage: HelloClient <filename>"
<< std::endl;

return 1;
}

Hello World - A Tutorial 19



Writing the Client

11. The string to object function takes the IOR and converts it into an in-
memory object reference. However, before we can use it as a Hello object,
we must narrow it to the correct interface type. This narrow has a similar
purpose to a C++ dynamic cast , and will return nil if it cannot cast to the
specified type.

// Get an object reference to the hello object.
std::string ior;
std::ifstream is(argv[1]);
std::getline(is, ior);
CORBA::Object_var obj

= orb->string_to_object(ior.c_str());
Hello_var hello = Hello::_narrow(obj);
if (CORBA::is_nil(hello))
{

std::cerr << "Unable to get hello reference"
<< std::endl;

return 1;
}

12. Now the client has an object reference for the remote Hello object. This can
be used this to invoke operations on the Hello , much as you would on a local
object:

// Send a message to the hello object.
hello->say_hello("World");

13. Finally, before the client exits we clean up the ORB object.

orb->destroy();

14. We must have exception handlers to catch any CORBA exceptions that may be
thrown when an error occurs. For example, an exception may be caught if the
client is unable to communicate with the server, say if the server is not running.

}
catch (CORBA::Exception& e)
{

std::cerr << "CORBA Exception: " << e << std::endl;
}

return 0;
}

20 CORBA Quick Start - Using TAO with C++Builder 6



Writing the Client

15. The HelloClient.cpp source file should now look like this:

#include <tao/corba.h>
#include <iostream>
#include <fstream>
#include <string>
#include "helloC.h"

int main(int argc, char* argv[])
{

try
{

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Check command line arguments.
if (argc != 2)
{

std::cerr << "Usage: HelloClient <filename>"
<< std::endl;

return 1;
}

// Get an object reference to the hello object.
std::string ior;
std::ifstream is(argv[1]);
std::getline(is, ior);
CORBA::Object_var obj

= orb->string_to_object(ior.c_str());
Hello_var hello = Hello::_narrow(obj);
if (CORBA::is_nil(hello))
{

std::cerr << "Unable to get hello reference"
<< std::endl;

return 1;
}

// Send a message to the hello object.
hello->say_hello("World");

orb->destroy();
}

Hello World - A Tutorial 21



Writing the Server

catch (CORBA::Exception& e)
{

std::cerr << "CORBA Exception: " << e << std::endl;
}
return 0;

}

16. Build the project. However, it cannot be run until we have written a corre-
sponding server program.

3.3 Writing the Server

Now we will develop a server program that implements the Hello interface we
defined in the IDL.

1. Go to File→New→Other. . . , switch to the ACE+TAO tab and choose to create a
new TAO Application.

2. Set the Application Type to Console and make sure that Use VCL is not checked.

3. Set the Linkage to Dynamic and ensure that Debug Libs is not checked.

4. Under Precompiled Headers, uncheck Use PCH since we will not be using a
precompiled header.

5. In the CORBA Libraries list, check the entry called PortableServer.

6. The ACE+TAO Location should be set to $(ACETAODIR) and the Location is
an Installed Copy.

7. Press OK to generate a new TAO console application, and use File→Save All to
save the files as HelloServer.cpp and HelloServer.bpr in the same directory as
the IDL file created above.

8. Add the IDL-generated source files helloC.cpp and helloS.cpp to the project.
These files contain the Hello interface’s stub code and skeleton code respec-
tively. The skeleton code is a group of classes that a server application can use
to receive requests from clients through the Hello interface.

9. Returning to HelloServer.cpp, we must include the header file containing the
server-side declarations, helloS.h, so that the IDL definitions required to im-
plement the Hello interface are available to the server program.

22 CORBA Quick Start - Using TAO with C++Builder 6



Writing the Server

#include <tao/corba.h>
#include <iostream>
#include <fstream>
#include "helloS.h"

10. The Hello interface defined in the IDL must be implemented in the C++ code
by what is called a servant. To write a servant we must derive a class from
POAHello , and provide an implementation of the say hello function. The
POAHello class is an abstract base class generated by the IDL compiler.

class HelloImpl : public virtual POA_Hello
{
public:

virtual void say_hello(const char* name)
throw(CORBA::SystemException);

};

11. Write the definition of the say hello function:

void HelloImpl::say_hello(const char* name)
throw(CORBA::SystemException)

{
std::cout << "Hello " << name << std::endl;

}

12. Next we move to the main fuction, where we declare an instance of the above
servant. Since we are using a stack-based servant it is important that it have
a longer lifetime than the ORB (i.e. it is declared first). This is necessary to
make sure that the servant is not destroyed while the ORB is still using it. In
the second tutorial we see how to use a reference-counted heap-based servant
which takes care of these lifetime issues automatically.

int main(int argc, char* argv[])
{

try
{

HelloImpl hello_servant;

13. The ORB object must be created and initialised using the command line argu-
ments. The ORBinit function strips away any command line arguments that
it recognises as ORB-related, so that you are left only with your application’s
arguments to process yourself.

Hello World - A Tutorial 23



Writing the Server

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

14. The server expects that argv[1] contains the name of a file. Later, the Inter-
operable Object Reference (IOR) will be written to this file.

// Check command line arguments.
if (argc != 2)
{

std::cerr << "Usage: HelloServer <filename>"
<< std::endl;

return 1;
}

15. All servants must be registered with a Portable Object Adapter (POA). A POA
is responsible for delivering incoming requests to the correct servant. In this
example we will simply use the so-called Root POA, which has been created
for you automatically by the ORB. POA objects in the ORB are arranged hier-
archically, and have a range of configurable options. In larger applications you
would typically create custom POA objects according to your specific needs.

// Get a reference to the Root POA.
CORBA::Object_var poa_obj

= orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa

= PortableServer::POA::_narrow(poa_obj);

16. Before a POA can process incoming requests it must be activated. This is done
via its associated manager object.

// Activate the POA manager.
PortableServer::POAManager_var poa_mgr

= poa->the_POAManager();
poa_mgr->activate();

17. Next we will activate the servant and write its IOR to the file. First, the call-
ing the this function on the servant automatically registers it with the Root
POA, and returns the corresponding CORBA object that may be used by re-
mote clients. The object to string function takes the object and converts it
into an IOR string. This IOR can be made available to client programs by some
means (in this example we write it to a file).

24 CORBA Quick Start - Using TAO with C++Builder 6



Writing the Server

// Activate the hello object and write out its IOR.
Hello_var hello_obj = hello_servant._this();
CORBA::String_var str

= orb->object_to_string(hello_obj);
std::ofstream os(argv[1]);
os << str << std::endl;
os.close();

18. Run the ORB event loop to allow it to process incoming requests from clients.

orb->run();

19. Finally, we must have exception handlers to catch any CORBA exceptions that
may be thrown when an error occurs.

}
catch (CORBA::Exception& e)
{

std::cerr << "CORBA Exception: " << e << std::endl;
}

return 0;
}

20. The HelloServer.cpp source file should now look like this:

#include <tao/corba.h>
#include <iostream>
#include <fstream>
#include "helloS.h"

class HelloImpl : public virtual POA_Hello
{
public:

virtual void say_hello(const char* name)
throw(CORBA::SystemException);

};

void HelloImpl::say_hello(const char* name)
throw(CORBA::SystemException)

{

Hello World - A Tutorial 25



Writing the Server

std::cout << "Hello " << name << std::endl;
}

int main(int argc, char* argv[])
{

try
{

HelloImpl hello_servant;

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Check command line arguments.
if (argc != 2)
{

std::cerr << "Usage: HelloServer <filename>"
<< std::endl;

return 1;
}

// Get a reference to the Root POA.
CORBA::Object_var poa_obj

= orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa

= PortableServer::POA::_narrow(poa_obj);

// Activate the POA manager.
PortableServer::POAManager_var poa_mgr

= poa->the_POAManager();
poa_mgr->activate();

// Activate the hello object and write out its IOR.
Hello_var hello_obj = hello_servant._this();
CORBA::String_var str

= orb->object_to_string(hello_obj);
std::ofstream os(argv[1]);
os << str << std::endl;
os.close();

orb->run();
}

26 CORBA Quick Start - Using TAO with C++Builder 6



Running the Application

catch (CORBA::Exception& e)
{

std::cerr << "CORBA Exception: " << e << std::endl;
}

return 0;
}

21. Build the project.

3.4 Running the Application

To run the application, follow these steps:

1. Open a Command Prompt (DOS Box) and change to the directory containing
the client and server executables.

2. Run the server program, specifying that the hello object’s IOR should be writ-
ten to a file called hello.ior.

HelloServer hello.ior

3. Open a second Command Prompt (DOS Box) and again change to the directory
containing the client and server executables.

4. Run the client program, specifying that the file containing the IOR is called
hello.ior.

HelloClient hello.ior

5. You should see the text Hello World appear on the server program’s output.

Hello World - A Tutorial 27



Running the Application

28 CORBA Quick Start - Using TAO with C++Builder 6



Chapter 4

VCL Hello World - A Tutorial

This tutorial takes you through the creation of VCL-based CORBA application to
show how to use TAO in an application with a graphical user interface.

Note: These instructions assume that you have either:

• installed a pre-built copy of the ACE+TAO libraries, executables and header
files; or

• built and installed ACE+TAO according to the instructions in appendix A.

The instructions also make use of the ACE+TAO Project Wizard to simplify the cre-
ation of CORBA applications. Please refer to section 2.1 to check that you have this
installed in the C++Builder 6 IDE.

4.1 Writing the IDL

As with the console-based tutorial, define the following IDL in a file called hello.idl:

#ifndef HELLO_IDL
#define HELLO_IDL

interface Hello
{

void say_hello(in string name);
};

#endif

VCL Hello World - A Tutorial 29



Writing the Client

To compile this IDL file, do the following:

1. Go to File→New→Other. . . and create a new Batch File.

2. Right-click the batch file in the Project Manager, select Edit/Options. . . , and
add the following commands:

set TAO_ROOT=%ACETAODIR%\include
tao_idl -Wb,pch_include=pch.h hello.idl

In this example we will be using a precompiled header file. The -Wb,pch include
command-line argument is used to specify the name of this file so that it is in-
cluded in the IDL-generated source code.

3. Save the batch file project into the same directory as the IDL file.

4. Right-click the batch file in the Project Manager and select Execute. You will
see that a number of source files have now been generated.

4.2 Writing the Client

We will begin coding the application itself by starting with the console-based client
program.

1. Go to File→New→Other. . . , switch to the ACE+TAO tab and choose to create a
new TAO Application.

2. Set the Application Type to VCL.

3. Set the Linkage to Dynamic and ensure that Debug Libs is not checked.

4. Under Precompiled Headers, make sure that Use PCH is checked.

5. The ACE+TAO Location should be set to $(ACETAODIR) and the Location is
an Installed Copy.

6. Press OK to generate a new TAO VCL application, and use File→Save All to
save the files as HelloClientWnd.cpp and HelloClient.bpr in the same directory
as the IDL file created above.

7. Create a new header file called pch.h with the following contents:

30 CORBA Quick Start - Using TAO with C++Builder 6



Writing the Client

#ifndef PchH
#define PchH

#include <tao/corba.h>

#endif

8. Go to Project→Options. . . , switch to the Compiler tab, and change the value
for Stop after in the Pre-compiled Headers group to be pch.h .

9. For every .cpp file currently in the project, replace the lines:

#include <tao/corba.h>
#pragma hdrstop

with:

#include "pch.h"
#pragma hdrstop

10. Add the IDL-generated source file helloC.cpp to the project.

11. Switch to the design view of the form and, using the Object Inspector change its
name property to HelloClientWindow . Then add an edit box and a button
so that the form looks like this:

12. In the HelloClientWnd.h, we must include the header file containing the client-
side declarations, helloC.h, so that the IDL definitions for the Hello interface
are available to the client program. This must be included from the form’s
header file as we will be using some IDL-generated classes as data members.

#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
#include "helloC.h"

VCL Hello World - A Tutorial 31



Writing the Client

13. Add data members to hold a reference to the ORB object and to a remote Hello
object.

private: // User declarations
CORBA::ORB_var orb_;
Hello_var hello_;

14. Next, in the file HelloClientWnd.cpp the ORB object is created and initialised
from the form’s constructor. We pass it the global command-line argument
variables argc and argv .

__fastcall THelloClientWindow::THelloClientWindow(
TComponent* Owner)

: TForm(Owner)
{

// Initialise the ORB.
orb_ = CORBA::ORB_init(_argc, _argv);

15. Still in the constructor, we will use the string to object function to obtain a
reference to the remote Hello object. Here we use a URL-style IOR to simplify
the extraction of the reference from a file called hello.ior.

// Get a reference to the hello object.
CORBA::Object_var obj

= orb_->string_to_object("file://hello.ior");
hello_ = Hello::_narrow(obj);
if (CORBA::is_nil(hello_))

throw Exception("Unable to get hello object");
}

16. Now the client has an object reference for the Hello object which can be used
to make remote calls. Add a handler for the button’s OnClick event which
sends the contents of the edit box using the say hello function:

void __fastcall THelloClientWindow::Button1Click(
TObject *Sender)

{
hello_->say_hello(Edit1->Text.c_str());

}

17. The project source file HelloClient.cpp should now look like this:

32 CORBA Quick Start - Using TAO with C++Builder 6



Writing the Client

//------------------------------------------------
#include "pch.h"
#pragma hdrstop
#include <ace\ACE.h>
#include <sstream>
//------------------------------------------------
USEFORM("Unit1.cpp", HelloClientWindow);
//------------------------------------------------
#pragma package(smart_init)
void ace_init(void)
{
#pragma startup ace_init

ACE::init();
}
void ace_fini(void)
{
#pragma exit ace_fini

ACE::fini();
}
//------------------------------------------------
WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
{

try
{

Application->Initialize();
Application->CreateForm(

__classid(THelloClientWindow),
&HelloClientWindow);

Application->Run();
}
catch (CORBA::Exception &exception)
{

try
{

std::ostringstream os;
os << "CORBA Exception: " << exception;
throw Exception(os.str().c_str());

}
catch (Exception &exception)
{

VCL Hello World - A Tutorial 33



Writing the Client

Application->ShowException(&exception);
}

}
catch (Exception &exception)
{

Application->ShowException(&exception);
}
return 0;

}
//------------------------------------------------

18. The form’s header file HelloClientWnd.h should contain:

//------------------------------------------------
#ifndef HelloClientWndH
#define HelloClientWndH
//------------------------------------------------
#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
#include "HelloC.h"
//------------------------------------------------
class THelloClientWindow : public TForm
{
__published: // IDE-managed Components

TEdit *Edit1;
TButton *Button1;
void __fastcall Button1Click(TObject *Sender);

private: // User declarations
CORBA::ORB_var orb_;
Hello_var hello_;

public: // User declarations
__fastcall THelloClientWindow(TComponent* Owner);

};
//------------------------------------------------
extern PACKAGE THelloClientWindow *HelloClientWindow;
//------------------------------------------------
#endif

19. The form’s source file HelloClientWnd.cpp would look like:

34 CORBA Quick Start - Using TAO with C++Builder 6



Writing the Server

//------------------------------------------------
#include "pch.h"
#pragma hdrstop
#include "HelloClientWnd.h"
//------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
THelloClientWindow *HelloClientWindow;
//------------------------------------------------
__fastcall THelloClientWindow::THelloClientWindow(

TComponent* Owner)
: TForm(Owner)

{
// Initialise the ORB.
orb_ = CORBA::ORB_init(_argc, _argv);

// Get a reference to the hello object.
CORBA::Object_var obj

= orb_->string_to_object("file://hello.ior");
hello_ = Hello::_narrow(obj);
if (CORBA::is_nil(hello_))

throw Exception("Unable to get hello object");
}
//------------------------------------------------
void __fastcall THelloClientWindow::Button1Click(

TObject *Sender)
{

hello_->say_hello(Edit1->Text.c_str());
}
//------------------------------------------------

20. Build the project.

4.3 Writing the Server

Now we will develop the VCL server program that implements the Hello interface
we defined in the IDL.

1. Go to File→New→Other. . . , switch to the ACE+TAO tab and choose to create a
new TAO Application.

VCL Hello World - A Tutorial 35



Writing the Server

2. Set the Application Type to VCL.

3. Set the Linkage to Dynamic and ensure that Debug Libs is not checked.

4. Under Precompiled Headers, make sure that Use PCH is checked.

5. In the CORBA Libraries list, check the entry called PortableServer.

6. The ACE+TAO Location should be set to $(ACETAODIR) and the Location is
an Installed Copy.

7. Press OK to generate a new TAO VCL application, and use File→Save All to
save the files as HelloServerWnd.cpp and HelloServer.bpr in the same directory
as the IDL file created above.

8. Add a new unit (to contain the implementation of the Hello interface) and
save it as HelloImpl.cpp.

9. Go to Project→Options. . . , switch to the Compiler tab, and change the value
for Stop after in the Pre-compiled Headers group to be pch.h .

10. Make sure every .cpp file currently in the project starts with the lines:

#include "pch.h"
#pragma hdrstop

11. Add the IDL-generated source files helloC.cpp and helloS.cpp to the project.

12. Switch to the design view of the form and, using the Object Inspector change
its name property to HelloServerWindow . Then add a memo control so that
the form looks like this:

36 CORBA Quick Start - Using TAO with C++Builder 6



Writing the Server

13. In the file HelloImpl.h, we must include the header file containing the server-
side declarations, helloS.h, so that the IDL definitions required to implement
the Hello interface are available to the server program.

//------------------------------------------------
#ifndef HelloImplH
#define HelloImplH
//------------------------------------------------
#include "helloS.h"

14. To implement the servant we derive a class from POAHello , and provide an
implementation of the say hello function. The class is also derived from
PortableServer::RefCountServantBase , which is a mixin class that adds
reference counting support to the servant.

class HelloImpl : public virtual POA_Hello,
public virtual PortableServer::RefCountServantBase

{
public:

virtual void say_hello(const char* name)
throw(CORBA::SystemException);

};

15. In HelloImpl.cpp include the header file for the form:

#include "HelloServerWnd.h"

16. Write the definition of the say hello function so that it adds a line of output
to the memo:

void HelloImpl::say_hello(const char* name)
throw(CORBA::SystemException)

{
String line = "Hello ";
line += name;
HelloServerWindow->Memo1->Lines->Append(line);

}

17. The ORB event loop needs to be run so that the ORB can process incoming
requests. In the previous console-based tutorial this event loop was simply
run from the main function in the program’s main thread. In a VCL appli-
cation this is not possible since the VCL event loop uses the main thread.

VCL Hello World - A Tutorial 37



Writing the Server

Instead, the ORB will be run using a background thread. To do this, go to
File→New→Other. . . , switch to the ACE+TAO tab and choose ORB Thread.
Name the class TORBThread and save the generated unit as ORBThread.cpp.
You should also change ORBThread.cpp so that, like the other .cpp files, it in-
cludes pch.h first.

18. In the HelloServerWnd.h file, include the header file ORBThread.h which con-
tains the declaration of the ORB thread class.

#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
#include <memory>
#include "ORBThread.h"

19. Add a data member to the THelloServerWindow class to point to a TORBThread
object. We use an auto ptr so that the object is deleted automatically when
the form is destroyed.

private: // User declarations
std::auto_ptr<TORBThread> orb_thread_;

20. In the file HelloServerWnd.cpp, we include the servant’s header file HelloImpl.h.

#include "pch.h"
#pragma hdrstop
#include <fstream>
#include "HelloServerWnd.h"
#include "HelloImpl.h"

21. The ORB object is created and initialised from the form’s constructor. We pass
it the global command-line argument variables argc and argv .

__fastcall THelloServerWindow::THelloServerWindow(
TComponent* Owner)

: TForm(Owner)
{

// Initialise the ORB.
CORBA::ORB_var orb

= CORBA::ORB_init(_argc, _argv);

38 CORBA Quick Start - Using TAO with C++Builder 6



Writing the Server

22. Still in the form constructor, we obtain a reference to the Root POA, and acti-
vate its manager so that it can process requests.

// Get a reference to the Root POA.
CORBA::Object_var poa_obj

= orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa

= PortableServer::POA::_narrow(poa_obj);

// Activate the POA manager.
PortableServer::POAManager_var poa_mgr

= poa->the_POAManager();
poa_mgr->activate();

23. Next we create an instance of the servant class, and register it with the POA.
Since we are now using a reference counted servant, we call remove ref to
indicate that we are done with the servant. The POA will also maintain a refer-
ence to the servant as long as required, ensuring that the servant is not deleted
until everything has finished using it.

// Activate the hello object and write out its IOR.
HelloImpl* hello_servant = new HelloImpl;
Hello_var hello_obj = hello_servant->_this();
hello_servant->_remove_ref();
CORBA::String_var str

= orb->object_to_string(hello_obj);
std::ofstream os("hello.ior");
os << str << std::endl;
os.close();

Note: The explicit call to remove ref shown above is not exception safe, since if
the this call throws an exception, the servant will leak. There is a smart pointer
class called PortableServer::ServantBase var that can be used to take care
of incrementing and decrementing the reference count automatically.

24. Finally, we create a TORBThread object to run the ORB event loop.

orb_thread_.reset(new TORBThread(orb));
}

25. The HelloServer.cpp source file should now look like this:

VCL Hello World - A Tutorial 39



Writing the Server

//------------------------------------------------
#include "pch.h"
#pragma hdrstop
#include <ace\ACE.h>
#include <sstream>
//------------------------------------------------
USEFORM("HelloServerWnd.cpp", HelloServerWindow);
//------------------------------------------------
#pragma package(smart_init)
void ace_init(void)
{
#pragma startup ace_init

ACE::init();
}
void ace_fini(void)
{
#pragma exit ace_fini

ACE::fini();
}
//------------------------------------------------
WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
{

try
{

Application->Initialize();
Application->CreateForm(

__classid(THelloServerWindow),
&HelloServerWindow);

Application->Run();
}
catch (CORBA::Exception &exception)
{

try
{

std::ostringstream os;
os << "CORBA Exception: " << exception;
throw Exception(os.str().c_str());

}
catch (Exception &exception)
{

40 CORBA Quick Start - Using TAO with C++Builder 6



Writing the Server

Application->ShowException(&exception);
}

}
catch (Exception &exception)
{

Application->ShowException(&exception);
}
return 0;

}
//------------------------------------------------

26. The form’s header file HelloServerWnd.h should contain:

//------------------------------------------------
#ifndef HelloServerWndH
#define HelloServerWndH
//------------------------------------------------
#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
#include <memory>
#include "ORBThread.h"
//------------------------------------------------
class THelloServerWindow : public TForm
{
__published: // IDE-managed Components

TMemo *Memo1;
private: // User declarations

std::auto_ptr<TORBThread> orb_thread_;
public: // User declarations

__fastcall THelloServerWindow(TComponent* Owner);
};
//------------------------------------------------
extern PACKAGE THelloServerWindow *HelloServerWindow;
//------------------------------------------------
#endif

27. The form’s source file HelloServerWnd.cpp should contain:

//------------------------------------------------

VCL Hello World - A Tutorial 41



Writing the Server

#include "pch.h"
#pragma hdrstop
#include <fstream>
#include "HelloServerWnd.h"
#include "HelloImpl.h"
//------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
THelloServerWindow *HelloServerWindow;
//------------------------------------------------
__fastcall THelloServerWindow::THelloServerWindow(

TComponent* Owner)
: TForm(Owner)

{
// Initialise the ORB.
CORBA::ORB_var orb

= CORBA::ORB_init(_argc, _argv);

// Get a reference to the Root POA.
CORBA::Object_var poa_obj

= orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa

= PortableServer::POA::_narrow(poa_obj);

// Activate the POA manager.
PortableServer::POAManager_var poa_mgr

= poa->the_POAManager();
poa_mgr->activate();

// Activate the hello object and write out its IOR.
HelloImpl* hello_servant = new HelloImpl;
Hello_var hello_obj = hello_servant->_this();
hello_servant->_remove_ref();
CORBA::String_var str

= orb->object_to_string(hello_obj);
std::ofstream os("hello.ior");
os << str << std::endl;
os.close();

orb_thread_.reset(new TORBThread(orb));

42 CORBA Quick Start - Using TAO with C++Builder 6



Writing the Server

}
//------------------------------------------------

28. The servant’s header file HelloImpl.h should have the contents:

//------------------------------------------------
#ifndef HelloImplH
#define HelloImplH
//------------------------------------------------
#include "helloS.h"
//------------------------------------------------
class HelloImpl : public virtual POA_Hello,

public virtual PortableServer::RefCountServantBase
{
public:

virtual void say_hello(const char* name)
throw(CORBA::SystemException);

};
//------------------------------------------------
#endif

29. The servant’s source file HelloImpl.cpp would now look like:

//------------------------------------------------
#include "pch.h"
#pragma hdrstop
#include "HelloImpl.h"
#include "HelloServerWnd.h"
//------------------------------------------------
void HelloImpl::say_hello(const char* name)

throw(CORBA::SystemException)
{

String line = "Hello ";
line += name;
HelloServerWindow->Memo1->Lines->Append(line);

}
//------------------------------------------------

30. Build the project.

VCL Hello World - A Tutorial 43



Running the Application

4.4 Running the Application

To run the application, follow these steps:

1. Run the server program by double clicking it in Windows Explorer.

2. Run the client program by double clicking it in Windows Explorer.

3. Type your name into the edit box in the client program, and press the Send
button.

4. You should see the text Hello Your Name appear on the server program’s
memo.

44 CORBA Quick Start - Using TAO with C++Builder 6



Appendix A

Building and Installing ACE+TAO

This appendix explains how to build ACE+TAO from source code using C++Builder
6. For instructions on how to build ACE+TAO using earlier versions of C++Builder,
please see the TAO with C++Builder website located at http://www.tenermerx.
com/tao_bcb .

A.1 Quick Build Instructions

These are the basic steps for building TAO using C++Builder 6. For more detailed
information, or if you run into problems, please see the additional sections below.

1. Open a Command Prompt (DOS Box).

2. Set the ACEROOTenvironment variable to the path where you unpacked the
source kit. The source kit is typically in a directory called ACE wrappers. For
example:

set ACE_ROOT=C:\ACETAO\src\ACE_wrappers

3. Let the build process know what version of C++Builder you are using:

set BCBVER=6

4. If you are building on Windows 9x, download an additional directory creation
utility from http://www.tenermerx.com/programming/corba/tao_bcb/
build/mkdirtree.zip and put the .exe on your path (e.g. in C:\Windows).
Then type:

set MKDIR=mkdirtree

Building and Installing ACE+TAO 45

http://www.tenermerx.com/tao_bcb
http://www.tenermerx.com/tao_bcb
http://www.tenermerx.com/programming/corba/tao_bcb/build/mkdirtree.zip
http://www.tenermerx.com/programming/corba/tao_bcb/build/mkdirtree.zip


Quick Build Instructions

before continuing.

5. Change to the ace source directory:

cd C:\ACETAO\src\ACE_wrappers\ace

6. Create the configuration header file. If you are building for Windows NT, 2000
or XP, create a config header file like this:

echo #include "ace/config-win32.h" > config.h

If you are building for Windows 95, 98 or Me, you should create a config header
file like this:

echo #define ACE_HAS_WINNT4 0 > config.h
echo #include "ace/config-win32.h" >> config.h

7. Change to the TAO source directory:

cd C:\ACETAO\src\ACE_wrappers\TAO

8. Build the ACE+TAO libraries and executables:

make -f Makefile.bor

9. Install the ACE+TAO header files, libraries and executables for use in your
applications. Here we are installing them into C:\ACETAO:

make -f Makefile.bor -DINSTALL_DIR=C:\ACETAO install

10. Add the directory containing the installed libraries and executables (in the ex-
ample above it is C:\ACETAO\bin) to your path. On Windows NT, 2000 and
XP you can do this using the System Control Panel and updating the path en-
vironment variable.

11. To make it simpler to use TAO from inside the C++Builder IDE, set up an
environment variable called ACETAODIRthat points to the install directory
that you specified above (e.g. C:\ACETAO). This can be done from inside the
C++Builder 6 IDE by going to the Tools menu, selecting Environment Options,
then going to the Environment Variables tab and adding a new User override.

46 CORBA Quick Start - Using TAO with C++Builder 6



Detailed Build Instructions

A.2 Detailed Build Instructions

The following sections provided detailed instructions on how to build and install
TAO using C++Builder 6.

A.2.1 Checking System Requirements

Disk Space

You should make sure you have lots of disk space available before you build. As
a rough guide it will take up to 250MB of space to build the dynamically linked re-
lease versions of the TAO libraries and executables. To build debug and/or statically
linked versions will obviously consume more space. To build all configurations will
probably require approximately 1GB of drive space, however most of the time you
will not want or need to build all configurations.

C++Builder Command Line Tools

To build TAO the Borland C++Builder command line tools need to be on the path.
These are usually installed in C:\Program Files\Borland\CBuilder6\bin. This direc-
tory should have already been added to you path when you installed C++Builder 6,
but if not you can add it to your path using the System Control Panel, or by executing
the command:

set PATH=C:\Progra˜1\Borland\CBuilder6\bin;%PATH%

A.2.2 Creating a Configuration Header File

Before building TAO you must create a file called config.h, which needs to be located
in the ACE wrappers\ace directory. This file is used to tell the TAO build process
what platform is being targeted, and also allows you to configure certain ACE and
TAO features.

Typically this file will simply contain:

#include "ace/config-win32.h"

If building for Windows 95, 98 or Me, the file should contain the lines:

#define ACE_HAS_WINNT4 0
#include "ace/config-win32.h"

Building and Installing ACE+TAO 47



Detailed Build Instructions

A.2.3 Build Configurations

TAO may be built in several different configurations. You should choose the config-
uration most appropriate to your needs (there may be more than one).

Option Description Suffix Default
DEBUG If enabled causes the TAO binaries to be

built with debug information. You may
want to build debug libraries if you want
to track down a problem in TAO.

d Off

STATIC Determines whether to use statically linked
libraries instead of DLLs. When using
DLLs you must also ship your applica-
tion with the C++Builder run-time library
and TAO DLLs. Using static libraries will
remove this need, but the static libraries
themselves can be very large (especially
when built with debug information).

s Off

CODEGUARDIf enabled causes TAO binaries to be built
with Codeguard support. Should be used
only when DEBUGis also on. Does not have
any affect on the output directory.

n/a Off

These options may be switched on by using environment variables, for example:

set DEBUG=1

and turned off again:

set DEBUG=

You may also enable the options by passing them as command line arguments to
make, for example:

make -f Makefile.bor -DDEBUG -DCODEGUARD

In addition to modifying the compiler options used to build TAO, these configu-
ration options determine the output directory of the binaries. When building the
dynamically-linked release version the core executables and utilities are put into
ACE wrappers\bin\Dynamic\Release, dynamically-linked versions with debug in-
formation into ACE wrappers\bin\Dynamic\Debug, and so on.

48 CORBA Quick Start - Using TAO with C++Builder 6



Detailed Build Instructions

The filenames of the libraries are also affected by the configuration options. Every
TAO library is given a b suffix to indicate that it is a library for a Borland compiler.
Other suffixes are added according to the table above. For example, the dynamically-
linked debug version of the TAO DLL is called tao bd.dll.

A.2.4 Build Steps

1. Open a Command Prompt (DOS Box).

2. Set the ACEROOTenvironment variable to the path where you unpacked the
source kit. The source kit is typically in a directory called ACE wrappers. For
example:

set ACE_ROOT=C:\ACETAO\src\ACE_wrappers

3. Let the build process know what version of C++Builder you are using:

set BCBVER=6

4. If you are building on Windows 9x the mkdir command may not support
the ability to create a directory tree in a single invocation. This ability is re-
quired by the TAO makefiles. Download an additional directory creation util-
ity from http://www.tenermerx.com/programming/corba/tao_bcb/
build/mkdirtree.zip and put the .exe on your path (e.g. in C:\Windows).
Then type:

set MKDIR=mkdirtree

before continuing.

5. Change to the TAO source directory:

cd C:\ACETAO\src\ACE_wrappers\TAO

6. If, in addition to the core libraries and executables, you want to build all of the
tests and example programs, set the following environment variable:

set BUILD=all

Please note that this is not required to use TAO in your own applications, and
setting this option will use lots of additional disk space.

7. Start the build:

Building and Installing ACE+TAO 49

http://www.tenermerx.com/programming/corba/tao_bcb/build/mkdirtree.zip
http://www.tenermerx.com/programming/corba/tao_bcb/build/mkdirtree.zip


Detailed Build Instructions

make -f Makefile.bor

Note: On some systems you may get an error from make saying the command line
arguments are too long. If this happens, try using the -l option when you run make,
or failing that, reducing the length of your PATHenvironment variable.

8. Install the ACE+TAO header files, libraries and executables for use in your
applications. Here we are installing them into C:\ACETAO:

make -f Makefile.bor -DINSTALL_DIR=C:\ACETAO install

This command will copy the DLLs and executables into C:\ACETAO\bin, the
include files into C:\ACETAO\include, and the .lib files required to link your
applications into C:\ACETAO\lib.

A.2.5 Using TAO from C++Builder

Before you can use TAO from inside the C++Builder IDE, you should make the fol-
lowing changes to your system:

1. Add the directory containing the installed libraries and executables (in the ex-
ample in the build steps above it is C:\ACETAO\bin) to your path. On Win-
dows NT, 2000 and XP you can do this using the System Control Panel and
updating the path environment variable.

2. To make it simpler to use TAO from inside the C++Builder IDE, set up an
environment variable called ACETAODIRthat points to the install directory
that you specified above (e.g. C:\ACETAO). This can be done from inside the
C++Builder 6 IDE by going to the Tools menu, selecting Environment Options,
then going to the Environment Variables tab and adding a new User override.

Please note that you should not have any spaces in the value for ACETAODIR.
For example, if TAO is installed in C:\Program Files\ACETAO use the short
pathname C:\Progra∼1\ACETAO instead.

50 CORBA Quick Start - Using TAO with C++Builder 6


	Introduction
	What is CORBA?
	What is TAO?
	Finding Information
	Typographical Conventions

	Programming with C++Builder and TAO
	Creating a Project Using the Wizard
	Creating a Project Manually
	Creating a Dynamically-Linked Console Project
	Creating a Statically-Linked Console Project
	Creating a Dynamically-Linked VCL Project
	Creating a Statically-Linked VCL Project

	Using Precompiled Headers
	Using the IDL Compiler

	Hello World - A Tutorial
	Writing the IDL
	Writing the Client
	Writing the Server
	Running the Application

	VCL Hello World - A Tutorial
	Writing the IDL
	Writing the Client
	Writing the Server
	Running the Application

	Building and Installing ACE+TAO
	Quick Build Instructions
	Detailed Build Instructions
	Checking System Requirements
	Creating a Configuration Header File
	Build Configurations
	Build Steps
	Using TAO from C++Builder



